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§ 1. Introduction: practical optical tests of Bell inequalities

The often deeply counterintuitive predictions of quantum mechanics have been
the focus of intensive discussions and debates among physicists since its
introduction. In the early 1930s, the first explicit quantum theory of measurement
was presented in the work of Landau and Peierls [1931], von Neumann [1932],
Fock [1932] and Pauli [1933]. Since these early days, the entangled states
(quantum states of multiple particles that cannot be represented as products
of independent single-particle states: Y Ñ y1 ⊗ y2 ⊗ · · · ⊗ yn, where
y i are subsystem states, for n particles) were prepared in order to better
differentiate quantum behavior from classical behavior. As Schrödinger [1935],
who defined entanglement, put it, entanglement is “the characteristic trait of
quantum mechanics”.
After the theorem of von Neumann concerning hidden-variables theories, of

which quantum mechanics might be the statistical counterpart, and the argument
of Einstein, Podolsky and Rosen (EPR) [1935], that quantum mechanics is an
incomplete theory of physical objects, practical tests of nonclassical behavior
were carried out by Wu and Shaknov [1950] with states of spin, as discussed by
David Bohm [1951] and analyzed by Bohm and Aharonov [1957] in the 1950s 1.
Next the way was prepared for the systematic study of quantum-scale behavior
that could not be explained by the class of local, deterministic hidden variables
theories. In 1964, John Bell derived a general inequality that introduced a
clear empirical borderline between local, classically explicable behavior and less
intuitive forms of behavior (such as nonlocality, contextuality and stochasticity),
which he called “nonlocality” (Bell [1964]) 2. The atomic cascade decay was at
the time the best optical source of entangled states. An experiment using such
a source was made soon after by Kocher and Commins [1967], to distinguish
between quantum mechanics and local hidden-variables theories. Clauser, Horne,

1 In this experiment, polarization measurements were made of two high-energy photons produced
by spin-zero positronium annihilation (Wu and Shaknov [1950]).
2 The premise resulting from Bell’s heuristics motivated by his “locality” thesis was later shown
(Jarrett [1984]) to be decomposable into the conjunction of two independent conditions, known as
parameter and outcome independence (Shimony [1990]).
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280 Multi-photon quantum interferometry [5, § 1

Shimony and Holt (CHSH) then modified Bell’s treatment to fit any experimental
arrangement similar to that of a two-spin atomic system, deriving the inequality

|E(q1, q2) + E(q1, q ′
2) + E(q

′
1, q2) − E(q

′
1, q

′
2)| ¶ 2,

where the E’s are the expectation values of the products of measurement
outcomes for measurement parameter values q1, q

′
1, q2 and q

′
2 (Clauser, Horne,

Shimony and Holt [1969]). This result set the stage for more definitive
experimental tests of quantum theory that involved a new generation of quantum
optical sources of entangled photon pairs, i.e., of two-photons.
Radiative atomic cascade two-photon sources were used by groups at Berkeley,

Harvard and Texas A&M in the early 1970s (see Clauser and Shimony [1978]).
However, one particular problem with Bell inequality tests arose during this
period: only single-channel polarizers consisting of a stack of glass plates at
the Brewster angle were available, giving access to only positive measurement
outcomes (see Aspect [1999]). In 1976, John Clauser performed one such
experiment with results that suggested that such Bell-type inequalities might in
fact hold, so that a local hidden-variable theory might be valid at the atomic scale.
However, advances in laser physics and optics allowed for a new generation of
elegant experiments by the group of Aspect at Orsay in the early 1980s, based
on the use of photon pairs produced by nonlinear laser excitations of an atomic
radiative cascade and the use of two-channel polarizers. These experiments paved
the way for future quantum-interferometric experiments involving entangled
photons, finally producing an unambiguous violation of a Bell-type inequality
by tens of standard deviations and strong agreement with quantum-mechanical
predictions (Aspect, Grangier and Roger [1981]).
Though producing photon pairs using atomic cascade decays had allowed

for the initial demonstration of the significance of entangled states, the method
was obviously far from optimal considering the sophisticated tests already
proposed (Fry and Thompson [1976]). Meanwhile, a new, more powerful source
of entangled photons, the optical parametric oscillator (OPO, fig. 1), was being
developed independent of tests of basic principles of quantum mechanics.
OPOs were operational in major nonlinear optics research groups around the
world almost immediately following the development of the laser (for more
details, see Bloembergen [1982]). It was seven years after the first OPOs were
introduced that an international collection of experimental groups [Byer at
Stanford University (Harris, Oshman and Byer [1967]), Magde and Mahr at
Cornell University (Magde and Mahr [1967]), and Klyshko et al. at Moscow
State University (Klyshko [1967])] independently discovered the spontaneous
emission of polarized photons in an optical parametric amplifier.
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5, § 1] Introduction: practical optical tests of Bell inequalities 281

Fig. 1. Optical parametric oscillator (OPO).

This very weak OPO spontaneous noise occupied a very broad spectral range,
from near the blue pump frequency through to the infrared absorption band.
A corresponding spatial distribution of different frequencies followed the well-
known and simple phase-matching conditions of nonlinear optical systems (see
§ 2). This effect had several names at the time: “parametric fluorescence”,
“parametric luminescence”, “spontaneous parametric scattering”, and “splitting”.
The existence of such a process follows from the quantum consideration of
a parametric amplifier developed by Louisell, Yariv and Siegman [1961]. The
Hamiltonian for the down-conversion process is given by

HI = 1
2

∫
dn P •Ep(r, t) = 1

2

∫
dn c (2)12pE1(r, t)E2(r, t)Ep, (1.1)

where P is the nonlinear polarization induced in the medium by the pump field E.
The polarization is defined in terms of the second-order dielectric susceptibility
of the medium c (2)12p, coupling the pump field to the two output fields E1 and E2.
The field annihilation operators for photons at two output frequencies w1 and
w2 can be written as

a1(t) = e
−iw1t(a10 cosh gt + ie

−i÷a†
20 sinh gt),

a2(t) = e
−iw2t(a20 cosh gt + ie

−i÷a†
10 sinh gt),

(1.2)

where g is a parametric amplification coefficient proportional to the second-
order susceptibility, the crystal length and the pump field amplitude, ai0 and a

†
i0

are the initial operator values, and ÷ is determined by the pump wave phase.
Accordingly, the average number of photons per mode in the output fields n1(t)
and n2(t) is

n1(t) =
〈
a†
1(t) a1(t)

〉
= n10 cosh

2 gt + (1 + n20) sinh
2 gt,

n2(t) =
〈
a†
2(t) a2(t)

〉
= n20 cosh

2 gt + (1 + n10) sinh
2 gt,

(1.3)
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282 Multi-photon quantum interferometry [5, § 1

where n10 and n20 are the inputs into the n1(t) and n2(t) fields, respectively. This
describes a two-component gain feature having the odd property that the “1” in
the second terms means that there is nonzero output, even when both input fields
are zero. This “extra” one photon per mode – due to vacuum fluctuations – can
be viewed as stimulating spontaneous down-conversion.
The practical theory describing the generation of such radiation was analyzed

in detail in 1967–1968 by Mollow and Glauber [1967], Giallorenzi and Tang
[1968, 1969] and Klyshko [1967].
The next step in the theory was to analyze the statistics of photons appearing

in such spontaneous conversion of one photon into a pair. This was done
by Zel’dovich and Klyshko [1969], and Mollow in 1969 (and later treated in
detail by Mollow [1973] and Kleinman [1968]), demonstrating the existence of
very strong correlations between these photons in space, time and frequency.
Burnham and Weinberg [1970] first demonstrated the unique and explicitly
nonclassical features of states of two-photons generated in the spontaneous
regime from the parametric amplifier. Quantum correlations involving two-
photons were exploited again 10 years later in experimental work by Malygin,
Penin and Sergienko [1981a,b]. Because of a very active research program at the
University of Rochester led by Mandel, and the work of Alley at the University
of Maryland, the use of highly correlated pairs of photons for the explicit
demonstration of Bell inequality violations has become popular and convenient
since the mid-1980s. The contemporary name for the process of generating these
states, “spontaneous parametric down-conversion” (SPDC), has become widely
accepted in the research community, and new, high-intensity sources of SPDC
have been developed (see § 3).
A number of excellent reviews on the topic of two-photon quantum interfer-

ence exist. Among the most comprehensive recent reviews covering the topic
of entangled-photon interference are Quantum Optics and the Fundamentals of
Physics by Perina, Hradil and Jurco [1994], Optical Coherence and Quantum
Optics by Mandel and Wolf [1995], Hariharan and Sanders [1996], Quantum
Optics by Scully and Zubairy [1997], and The Physics of Quantum Information
by Bouwmeester, Ekert and Zeilinger [2000]. Though quantum optics has always
kept the attention of the physics community, these reviews have mainly covered
the subjects of quantum coherence, squeezed states, quantum non-demolition
measurement and, most recently, quantum information. The main goal of this
review is to exhibit several different contemporary trends in the development
of entangled-photon interferometry using SPDC. We shall concentrate mainly
on developments in the area of experimental two-photon interferometry, which
has received a significant boost recently due to the importance of the properties
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5, § 2] Two-photon interferometry with type-I phase-matched SPDC 283

of quantum entanglement in such exciting, but still relatively young areas as
quantum teleportation, quantum cryptography and quantum computing (see also
§ 3 of ch. 1 in this volume).

§ 2. Two-photon interferometry with type-I phase-matched SPDC

Spontaneous parametric down-conversion (SPDC) of one photon into a pair is
said to be of one two types, type I or type II, depending on whether the two
photons of the down-conversion pair have the same polarization or orthogonal
polarizations. The two photons of a pair can also leave the down-converting
medium either in the same direction or in different directions, the collinear
and noncollinear cases respectively. A medium is required for down-conversion,
as conservation laws exclude the decay of one photon into a pair in vacuum.
The medium is usually some sort of birefringent crystal, such as potassium
dihydrogen phosphate (KDP), having a c (2) optical nonlinearity.
Upon striking such a nonlinear crystal there is a small probability (on the

order of 10−7) that an incident pump photon will be down-converted into a
two-photon (see fig. 2). If down-conversion occurs, these conserved quantities
are carried into that of the resulting photon pair under the constraints of their
respective conservation laws, with the result that the phases of the corresponding
wavefunctions match, in accordance with the relations

w1 + w2 = wp, k1 + k2 = kp, (2.1)

known as the “phase-matching” conditions, where the ki and w i are momenta
and frequencies for the three waves involved. The individual photons (here
labeled i = 1, 2) are often arbitrarily called “signal” and “idler”, for historical
reasons. When the two photons of a pair have different momenta or energies,
entanglement will arise in SPDC, provided that the alternatives are in principle
experimentally indistinguishable.
The two-photon state produced in type-I down-conversion can be written

|y〉 =
∫ wp

0
dw1 ÷(w1,w0 −w1) |w1〉 |w0 − w1〉 , (2.2)

where ÷(w1,w0 − w1) is the frequency density and the two photons leave the
nonlinear medium with the same polarization, orthogonal to the polarization of
the pump beam photons. Down-conversion photons are thus produced in two
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284 Multi-photon quantum interferometry [5, § 2

Fig. 2. Spontaneous parametric down-conversion (Saleh [1998]).

thick spectral cones, one for each photon, within which two-photons appear each
as a pair of photons on opposite sides of the pump-beam direction (see fig. 2).
In a pioneering experiment in the mid-1980s, Hong, Ou and Mandel

[1987] created noncollinear, type-I phase-matched SPDC photon pairs in
KDP crystal using an ultraviolet continuous-wave (cw) laser pump beam (see
fig. 3). These photon pairs were directed to a movable beamsplitter by two
mirrors, so that the two resulting spatially superposed beams impinged on
two photodetectors D1 and D2. Filters placed in the apparatus determined
the frequency spread of the down-converted photons. This experiment empir-
ically demonstrated the strong temporal correlation of the two-photons. The
correlation function for two-photons is g(t) = G(t)/G(0). In the experiment
G(t) =

∫
dt ÷[(w0/2) + w1, (w0/2) − w1], where the down-converted light was

frequency-degenerate, so that ÷ peaked at w1 = 1
2w0 = w2, with w0 = 351.1 nm;

g was nearly Gaussian in w with a bandwidth Dw.
The probability of joint detection of the two photons of the pair at D1 and D2,

at times t and t + t respectively, in such an experiment is given by

P12(t) = K
〈
E(−)1 (t)E

(−)
2 (t + t)E

(+)
2 (t + t)E

(+)
1 (t)

〉

= K |G(0)|2 {
T 2|g(t)|2 + R2|g(2Dt − t)|2 − RT [g∗(t) g(2Dt − t) + c.c.]

}
,

(2.3)
where the Ei are the electric fields at detectors Di, and K is a constant
characterizing the detectors. In the Hong–Ou–Mandel (HOM) experiment, the
coincidence rate for photon joint detection at D1 and D2 was studied as the
beamsplitter (BS) was translated vertically from its central location by small
distances c dt , giving rise to optical path differences for the two outgoing beams.
With R/T = 0.95, the corresponding joint count rate Nc exhibited a sharp dip,
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Fig. 3. Hong–Ou–Mandel interferometer (Hong, Ou and Mandel [1987]).

Fig. 4. Hong–Ou–Mandel dip (Hong, Ou and Mandel [1987]).

near the time difference dt , having a width determined by the length of the
wavepacket (or, equivalently, the coherence time) of the two-photons.
This nonclassical coincidence dip was seen to fall to a few percent from

the maximum value (see fig. 4), whereas classical optics predicts a visibility
that cannot exceed 0.5 (Mandel [1983]) and Bell-type inequality violations can
be obtained once coincidence visibilities exceed 71% (see, for example Tittel,
Brendel, Gisin and Zbinden [1999]). Such a dip – hereafter referred to as
the “Hong–Ou–Mandel dip” – also provided for an empirical measure of the
time intervals between the two photon arrivals with sub-picosecond precision.
Unlike methods requiring the observation of second-order (i.e., single-photon)
interference, this technique does not require keeping path differences stable to
within a fraction of a wavelength.
In 1988, a similar arrangement and light frequency was used by Ou

and Mandel [1988a,b] to demonstrate the violation of Bell’s inequality by
six standard deviations, in addition to disagreement with classical optical
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Fig. 5. Shih–Alley experiment (Shih and Alley [1988]).

predictions. In that experiment, the idler photon was rotated by 90 degrees in
one beam before reaching the beamsplitter, and polarizers were placed before
D1 and D2 at angles q1 and q2, respectively, to obtain count rates corresponding
to the joint probabilities of the left-hand side of Bell’s inequality. Taking into
account alignment imperfections, the observed joint probabilities were found in
this experiment to be in agreement with the quantum mechanical predictions and
in violation of the CHSH inequality. According to quantum theory, the choices
q1 =p /8, q2 =p /4, q1′ = 3p /8, q2′ = 0, for example, yield S = 1

4K(
√
2 − 1) > 0,

where S ¶ 0 is the Clauser–Horne variant of the inequality (Clauser and Horne
[1974]). The corresponding two-photon interference visibility was empirically
found to be V = 0.76.
That same year, Shih and Alley [1988] used a similar experimental arrange-

ment, but replaced the cw pump laser with a pulsed laser operating at 266 nm
(fig. 5), to demonstrate a three-standard-deviation Bell-type inequality violation.
In particular, it was found that d =

∣∣[Rc( 18p ) − Rc( 38p )]/ R0∣∣ = 0.34± 0.03 > 1
4 ,

where d ¶
1
4 is the Freedman–Clauser variant of the inequality (Freedman

and Clauser [1972]). Furthermore, the results were in good agreement with the
quantum-mechanical prediction of d = 1

4

√
2 ~= 0.35.

In a variation on the same experimental arrangement, Rarity and Tapster
obtained a coincidence dip by translating right-angle prisms, instead of fixed
mirrors, placed in the beam paths before the beamsplitter. They next explored
the frequency non-degenerate case of SPDC to obtain an interferogram exhibiting
additional oscillations (Rarity and Tapster [1990a]). The time resolution was
improved to approximately 40 fs and the observed visibility reached V = 0.84.
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Fig. 6. Rarity–Tapster experiment (Rarity and Tapster [1990b]).

During the same period, after proposals by Horne, Pykacz, Shimony, Zeilinger
and Zukowski (Horne and Zeilinger [1985], Zukowski and Pykacz [1988],
Horne, Shimony and Zeilinger [1989]), Rarity and Tapster [1990b] used a
modified arrangement involving two beamsplitters and two balanced Mach–
Zehnder interferometers to test Bell’s inequality. In this case, the variable of the
state entanglement was momentum-direction and phase-shifting elements were
placed in space-like separated locations (see fig. 6). The measured value for
the left-hand side of the CHSH inequality using this arrangement was found to
reach S = 2.21 at an interference visibility of V = 0.78, amounting to an inequality
violation by 10 standard deviations. SPDC had also previously been used for
similar experiments by Ou and Mandel [1988b] using polarization variables.
A different interferometric arrangement having two spatially separated,

unbalanced Mach–Zehnder interferometers, each involving a phase shift ÷i
(i = 1, 2) between the long and short beam paths, was also proposed by
Franson [1989], in order to test a Bell-type inequality for position and energy
without the involvement of polarization variables or polarizers. This latter sort
of experiment was carried out by Franson [1991] (see fig. 7). The interferometer
was pumped by a cw laser that produced energy-degenerate two-photons by
SPDC. Brendel, Mohler and Martienssen [1992], Kwiat, Steinberg and Chiao
[1993] and Shih, Sergienko and Rubin [1993] carried out similar experiments,
though with somewhat different arrangements.
The initial two-photon state for such experiments can be written

|y〉 = 1
2

(|S〉1 |S〉2 − ei(÷1+÷2) |L〉1 |L〉2 + ei÷2 |S〉1 |L〉2 + ei÷1 |L〉1 |S〉2
)
,
(2.4)
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288 Multi-photon quantum interferometry [5, § 2

Fig. 7. Franson interferometer (Franson [1991]).

where S and L refer to the temporal position corresponding to short and
long optical path lengths, respectively. By using a sufficiently large path-length
difference between long and short options, the last two terms may be neglected –
an entangled two-photon state results.
In the above experiments, the difference of optical paths in the two interfer-

ometers, DL, satisfies the requirement cTcoh � DL, where Tcoh is the coherence
time of the down-converted photons, so as to exclude single-photon (i.e., second-
order) interference and to allow only two-photon (i.e., fourth-order) interference
to occur. Since a cw laser was used as a pump, the photon emission times
were unknowable (i.e., experimentally indistinguishable in principle), allowing
no way of determining which of the two photons detected takes the short path
and which takes the long path, while preserving the energy correlations between
photons. The resulting coincidence counting rate was Rc = 1

4 cos
2
(
÷′
1 + ÷

′
2

)
.

This ostensibly allowed the demonstration of nonlocal effects due to quantum
theory and the testing of local realistic theories because of their in-principle
capability of providing 100% two-photon interference visibility while no single-
photon interference would arise when the individual phases ÷′

i (÷
′
1 = ÷1/2,

÷′
2 = ÷2 /2 + ÷0) were varied. However, it should be noted that it recently has been
shown that such experiments cannot provide tests of local realism, since there
exists a local hidden-variable model that reproduces quantum predictions for
joint measurements using this apparatus (Larsson, Aerts and Zukowski [1998]).
A time–frequency Bell inequality test has also been proposed, though not

realized (Davis [1989]). The idea is to measure the detection time of one of
two-photons produced by down-conversion of a bandwidth-limited, pulsed pump
beam, with respect to the center of each down-converted pump pulse and the
spectral frequency of the other. The detection time of the first photon provides
information regarding the arrival time of the second photon from the same
two-photon. Thus the arrival time and the spectral frequency of the second
photon become known precisely enough to violate the time–frequency bandwidth

Revised proof, Progress in Optics 42, p. 288



5, § 2] Two-photon interferometry with type-I phase-matched SPDC 289

Fig. 8. Apparatus for testing local realism with a Bell inequality (Torgerson, Branning, Monken and
Mandel [1995]).

product. Using time-dependent-physical-spectrum (TDPS) measurements, using
a single-photon detector behind a Fabry–Perot etalon, the photon arrival time is to
be measured to a precision limited only by the reciprocal of the etalon frequency
resolution. The quality factor of the etalon then determines which combination
of the time and frequency ĜQ, is observed. Positive or negative values are to
be attributed based on whether or not the photon is transmitted through the
etalon within a given time window. The necessary correlations between such
measurements on space-like separated photons will arise due to their simulta-
neous production under phase-matching constraints. Considering three sets of
coincidence count rates under the assumptions of counterfactual definiteness of
photon properties and the Einstein locality condition, given the above direct
correlations allows a Bell-type inequality to be derived for these variables:

Pr[F̂ (1) = +, T̂ (2) = −] ¶ Pr[F̂ (1) = +, Ĝ (2) = −] + Pr[Ĝ (1) = +, T̂ (2) = −], (2.5)

where F and T refer to the special cases of pure frequency and pure time
measurements, and the superscripts each refer to one of the two photons,
arbitrarily labeled 1 and 2.
There followed a truly remarkable violation of local realism by roughly

40 standard deviations. This result was achieved in an experiment by Torgerson,
Branning, Monken and Mandel [1995] (see fig. 8). Motivated by the ambiguous
results of Bell-type inequality tests in which two photons pass through QWPs
before reaching polarization analyzers, these workers obtained tremendous
inequality violations that removed any lingering questions about nature’s ability
to violate such inequalities.
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In late 1994, an argument was presented to the effect that many experiments
involving SPDC cannot be used to properly test Bell-type inequalities because
the states they utilized are in fact product states (De Caro and Garuccio [1994]).
That is, only by post-selecting from the full ensemble of down-conversion
events that one-half of events in which joint-detections occur, can Bell tests
be simulated. In particular, such a method appears invalid because the intrinsic
efficiency of detection required for loophole-free tests is 67% (Kwiat [1995],
Kwiat, Eberhard, Steinberg and Chiao [1994], Eberhard [1993]). However, it
was subsequently pointed out that even type-I phase-matched down-conversion
sources can be configured so as to produce genuine entanglement without the
need for post-selection (Kwiat [1995]). This concern can be completely avoided
by using type-II phase-matched down-conversion sources that produce a state
truly entangled in regard to polarization. Furthermore, the CHSH inequality may
be slightly modified so as to allow the use of the full ensemble in a valid Bell-
type inequality test.

§ 3. Two-photon interferometry with type-II SPDC

In the case of type-II spontaneous parametric down-conversion (SPDC), the
two photons of each down-conversion pair have orthogonal rather than identical
polarizations. This allows the entanglement of their states to involve polarization
in addition to those other quantities potentially involved in the type-I case.
This sort of entanglement, including multiple degrees of freedom, has been
referred to as “hyper-entanglement” (Kwiat [1997]). In the type-II case, if the
two photons of a pair leave the down-converting medium in different directions,
i.e., noncollinearly, their entanglement will involve both directions – as it is not
possible to identify which photon went in each direction – and polarizations.
Moreover, for a nearly monochromatic, continuous-wave laser pump any sort
of down-conversion pair entanglement will involve energy, yielding hyper-
entanglement with three relevant quantities.
Such states are generally given by

|y〉 = 1
2

∫ wp

0
dw ÷(w,w0 − w) |w〉 |w0 − w〉

· (|k1〉 |k′
1〉 + exp[i÷] |k2〉 |k′

2〉
)
(|e〉 |o〉 + |o〉 |e〉) ,

(3.1)

where the orthogonal polarizations of the down-conversion photons are labeled
“e” and “o”, according to their orientation relative to the polarizations associated
with the extraordinary and ordinary axes of the nonlinear crystal used for down-
conversion. Unlike the case of type-I phase-matched down-conversion, the two
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Fig. 9. SPDC under type-II phase-matching conditions (Kwiat [1997]).

Fig. 10. Bell inequality tests using type-II phase-matched two-photons (Kiess, Shih, Sergienko and
Alley [1993]).

down-conversion light cones are not concentric about the direction of the pump
beam (see fig. 9, and contrast with fig. 2).
The new ingredient in the type-II case (eq. 3.1), compared with the type-I case

(eq. 2.2), is the involvement of polarization in the entanglement. Entangled states
of this kind were used by Kiess, Shih, Sergienko and Alley [1993] to find CHSH
inequality violation by 22 standard deviations. In that experiment, a 351.1 nm
cw laser pump was used to produce two-photons in BBO crystal at 702.2 nm.
These collinear-photon pairs were deflected by a nonpolarizing beamsplitter to
two Glan–Thompson polarization analyzers followed by photodetectors, and the
resulting coincidence detections were studied (see fig. 10).
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Fig. 11. Polarization two-photon coincidences varying optical delay (Rubin, Klyshko, Shih and
Sergienko [1994]).

Shortly thereafter, a comprehensive theoretical treatment of these type-II
phase-matched two-photons was given by Rubin, Klyshko, Shih and Sergienko
[1994]. A review of several experiments done at the University of Maryland–
Baltimore County verifying this treatment was presented therein. Quantum
beating between polarizations was also observed as absolute polarizations were
varied while relative polarization was kept orthogonal (see fig. 11).
A similar experimental arrangement was then used to demonstrate the

violation of two Bell-type inequalities, one for polarization and one for space–
time, in a single experimental arrangement (Pittman, Shih, Sergienko and Rubin
[1995]). In order to test the latter, EPR states were produced by probability-
amplitude cancellation. The experimental arrangement was similar to that of
fig. 10, but included also a large quartz polarization delay line and a number
of thinner reorientable birefringent quartz plates placed before the predetector
polarization analyzers. Two optical paths to each detector were thus created, so
that a two-photon state of the form

Y = A(X1,X2) − A(Y1,Y2)

was created, where 1 and 2 label the fast-axis path and the slow-axis
path respectively, analogously to the short and long paths of the Franson
interferometer, and X and Y indicate two orthogonal linear polarizations.
Notably different from the Franson interferometer, however, is that the

entangled state here arises from probability-amplitude cancellation rather than
from the use of a short coincidence counting time window. In the position
test, by activating two spacelike separated Pockels cells, a coincidence counting
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Fig. 12. High-intensity two-photon source (Kwiat, Mattle, Weinfurter, Zeilinger, Sergienko and Shih
[1995]).

rate Rc = R0 [1 − cos (w1D1 − w2D2)] was found, where the Di are the total
optical delay between the optical paths of the two detectors, and w1 and w2
are the signal and idler frequencies. An inequality violation of more than
14 standard deviations was achieved. Similarly, a test in polarization was made
by rotating polarization analyzers behind each Pockels cell with coincidence
counting rate Rc(÷), where ÷ is the difference in polarization analyzer angles at
counters 1 and 2, such that d =

∣∣[Rc( 18p ) − Rc( 38p )]/ R0∣∣ = 0.309 ± 0.009 > 1
4 .

A violation of the constraints of local hidden variables theory by more than six
standard deviations was observed.
In 1995, a new high-intensity, type-II phase-matched SPDC two-photon source

was developed in order to take full advantage of two-photon entanglement
involving polarization. Two-photons were produced noncollinearly and directly,
i.e., without the use of extra beamsplitters or mirrors previously required to
emulate entanglement post-selectively (see fig. 12) (Kwiat, Mattle, Weinfurter,
Zeilinger, Sergienko and Shih [1995]).
This source allowed the observation of CHSH inequality violations by more

than 100 standard deviations in less than 5 minutes. Furthermore, all four
polarization Bell-states

∣∣Y±〉
= 1
2 (|H,V〉 ± |V,H〉) , ∣∣F±〉

= 1
2 (|H,H〉 ± |V,V〉) , (3.2)

were readily produced. The use of a half-wave plate (HWP) allowed for
polarization flipping between ordinary and extraordinary, that is H and V, states.
It thus allowed for the exchange of states |Y −〉 and |F−〉, and states |Y +〉 and
|F+〉. Similarly, a birefringent phase-shifter allowed for a sign change between
two-photon joint amplitudes, so that an exchange between two-photon states
|Y +〉 and |Y −〉, and between |F+〉 and |F−〉, was also accomplished. Bell-type
inequalities were tested using all four Bell states, with significant violations in
each case.
In addition to the problem of creating high-intensity sources two-photons with

entanglement involving polarization, there have been other difficulties associated
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with entangled optical states. First, long crystals capable of producing entangled
states with two polarizations give rise to nontrivial walk-offs. This problem
can arise in the form of spatial walk-off: a photon of one polarization moves
more quickly through the crystal than the other (yielding longitudinal walk-off)
and, though they will leave the crystal collinearly, they can move in different
directions while within the crystal (transverse walk-off). For sufficiently short
crystals, one can completely compensate for the walk-off, as interference occurs
pairwise between processes where the photon pair is created at equal distances
but on opposite sides of the crystal central axis. This is accomplished by the
introduction in each of the two photon paths of a similar crystal half as long (or
in one path and of identical length) after polarization rotation of the photons. This
makes the polarization that was previously fast the slow polarization, and vice
versa (Rubin, Klyshko, Shih and Sergienko [1994], Kwiat, Mattle, Weinfurter,
Zeilinger, Sergienko and Shih [1995]). Similarly, optimal transverse walk-off
compensation is accomplished. However, for a sufficiently long crystal, the
o and e rays may separate by more than the coherence length of the pump
photons, making complete compensation impossible.
After the Hong–Ou–Mandel (fig. 3) and Shih–Alley (fig. 5) experiments,

it was often intuitively believed that the two-photon interference could be
understood in terms of the simultaneous arrival – and hence possible interaction
of the two photons of each pair at the common beamsplitter. This is incidental,
however. The essential requirement is the equality of optical path length to within
the coherence length of the photons, resulting in in-principle indistinguishability.
Type-II phase-matched two-photons provided an opportunity to demonstrate
this. Pittman, Strekalov, Migdall, Rubin, Sergienko and Shih used collinear
type-II phase-matched SPDC in a similar arrangement to observe two-photon
interference, where the two photons of each pair were made to reach the common
beamsplitter at times greater than the coherence length of their 702.2 nm photons
yet still yield two-photon interference (Pittman, Strekalov, Migdall, Rubin,
Sergienko and Shih [1996]) (see fig. 13).
This provided a counterexample to the intuitive, local picture of some local

influence at a common beamsplitter “telling them” which way to travel afterward.
First, a phase shifter (tay) was placed in the path of the signal photon. Then, since
that alone could eliminate the indistinguishability of the two-photon alternatives
necessary for coincidence interference, “postponed compensation” was used, the
leading photon was delayed for t1x = 2tay after the beamsplitter. Thus the
arrival of the photons at the two detectors was accomplished in exactly the same
order and time difference, successfully restoring indistinguishability of detection
events, as can be clearly seen in a space–time portrayal of alternative events (see
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Fig. 13. Schematic of postponed compensation demonstration (Pittman, Strekalov, Migdall, Rubin,
Sergienko and Shih [1996]).

Fig. 14. Space–time diagram of restored indistinguishability (Pittman, Strekalov, Migdall, Rubin,
Sergienko and Shih [1996]).

fig. 14). In fig. 13, the delay, state and path labels are identical, allowing for direct
comparison with those of fig. 14, if one reorients the apparatus schematic so
that the down-conversion crystal is placed at the bottom with its output directed
upward. Such an apparatus later proved useful for high-precision polarization
mode dispersion measurements (see below).
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Fig. 15. Apparatus for postselection-free Bell-inequality test energy (Strekalov, Pittman, Sergienko,
Shih and Kwiat [1996]).

In 1996, another step exhibiting the nonlocal character of two-photon quantum
interference was taken when the new high-intensity type-II phase-matched SPDC
source was used by some of the same investigators to make a post-selection-
free test of a Bell inequality with entanglement involving energy (Strekalov,
Pittman, Sergienko, Shih and Kwiat [1996]). Unlike the experiment of Franson
(fig. 7), where a short-duration time window was used to post-select the
coincidence alternatives of interest, this experimental arrangement avoided
unwanted alternatives by design: the short–long and long–short alternatives were
engineered out.
Noncollinear beams of 702.2 nm-photon pairs were created in a symmetrical

configuration and passed through a quartz compensator, quartz compensator
rods, Pockels cells and polarization analyzers (see fig. 15). The quantum state of
two-photons that emerged from the birefringent rods along the two propagation
directions was

|F〉 ∝
[
|s〉1 |s〉2 ei(a + b) − |f 〉1 |f 〉2

]
sin(÷1 + ÷2)

+
[
|s〉1 |f 〉2 eia − |f 〉1 |s〉2 eib

]
cos(÷1 + ÷2),

(3.3)

where a and b are the phase shifts introduced by each of the two Pockels cells.
The resulting interference visibility, 95%, was found to exceed the limit set by
Bell locality by 17 standard deviations. It is noteworthy that the pair of quartz
rods, rather than the usual pair of spatial paths as in the Franson apparatus,
provide the interfering quantum alternatives in this experiment.
In 1998, Kwiat and Weinfurter showed how higher-dimensional Hilbert spaces

could be used to distinguish Bell states (eq. 3.2), in what they called “embedded
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Fig. 16. Bell-state analyzer (Kwiat and Weinfurter [1998]).

Bell-state analysis” (Kwiat and Weinfurter [1998]). Previously, Vaidman and
Luetkenhaus had shown that the Bell states cannot be fully distinguished using
only linear optical elements, if multiple entanglements are not involved. The
main idea of Kwiat and Weinfurter was to use entanglements including variables
beyond those of the Bell states, for example energies in the case of a polarization-
state analysis, and the additional interferometric measurements they allow, to
fully distinguish the four Bell states. In the chosen example, first photon pairs
in Bell states are sent to a 50−50 beamsplitter and the emerging beams sent to
polarizing beamsplitters (see fig. 16).
The scheme works here because only state |Y −〉 can give rise to one photon

in each beamsplitter output beam, allowing the state to be readily identified by
coincidence measurements in detector pairs a and b. Then, by looking at only one
of the wings corresponding to one beam, one is able to distinguish between the
remaining three states. Birefringent material, with axes oriented to correspond to
the H−V basis states, was introduced for this purpose. That gives rise to temporal
shifts between H and V polarization components, distinguishing |Y +〉 from
|F±〉. |Y +〉 was distinguished by detecting two photons in one wing separated in
time, making sure that this time difference is still less than the coherence time of
the pump photons. Finally, in the ±45º basis, |F±〉 are distinguished from one
another by the polarizing beamsplitter: for |F+〉 there will be a simultaneous
arrival of two photons at one detector, while for |F−〉 there will be simultaneous
detections at the two detectors of one wing.
Next, a further improvement in the brightness of down-conversion photon

pairs whose entanglement involves momentum was made by Kwiat, Waks,
White, Appelbaum and Eberhard [1999]. By using two nonlinear crystals (BBO)
under type-I phase-matching conditions, these workers were able to achieve
a brightness many orders of magnitude higher than previous sources. They
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Fig. 17. Two-crystal ultra-bright two-photon source (Kwiat, Waks, White, Appelbaum and Eberhard
[1999]).

accordingly observed a far higher violation of a CHSH Bell-type inequality, as
much as 242 standard deviations within three minutes. Considerations of source
symmetry suggest that an increase in intensity of 10000 times was achieved in
the entire output. Two relatively thin (0.59mm) BBO crystals were identically
cut and oriented so that their optic axes lay in perpendicular planes. They were
then pumped by a 351.1 nm laser line polarized 45 degrees to both the e and o
crystal axes (see fig. 17). The result was the production of two-photons in which
all pairs of a given color were entangled, as the amplitudes for the orthogonal
modes were non-zero in only one of the two and in alternate crystals. That is,
two-photons will be described by the polarization state

|y〉 = 1√
2

(|H〉 |H〉 + ei÷ |V〉 |V〉) . (3.4)

The phase ÷ is adjustable by changing crystal tilt, by phase shifting one of the
output beams or adjusting the phase relation between horizontal and vertical
polarization components of the pump state. A two-photon interference visibility
of V = 0.996 was thus achieved.
In another significant step forward, Zeilinger et al. tested a Bell-type inequality

under strict locality conditions, in order to close one loophole of previous
Bell tests, since it is conceivable that polarizers might somehow communicate
their settings to one another before two-photons reach them (Weihs, Jennewein,
Simon, Weinfurter and Zeilinger [1998]). In this they surpassed the previous
attempt of Aspect, Dalibard and Roger [1982], whose polarizer orientations had
only been rapidly, periodically changed during the photons’ flight from their
source to polarizers separated by a distance of 12m, which accordingly suffered
from what has come to be known as the “periodicity loophole” (Shimony [1990],
Weihs, Weinfurter and Zeilinger [1997]).
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Zeilinger et al. separated their polarizers by 400m, thereby allowing them
a full 1.3ms to make ultrafast physically random (as opposed to physically
deterministic pseudorandom) polarizer orientations, as well as to independently
register measurement results from each wing of the apparatus. At the end of
each cycle of the experiment, the two sets of data were brought together to
view the correlations. 97% coincidence interference visibility was obtained, and
the CHSH inequality was violated by 30 standard deviations. There remains
only the “detection loophole”, to such tests after this work. This final loophole
can be blocked when photodetection efficiencies can be improved beyond 0.841
(Shimony [1990]).
As a practical application of two-photon interferometry, two-photon inter-

ference patterns similar to the HOM dip (see fig. 4) have proven useful for
measuring polarization mode dispersion (PMD), the difference in propagation
rate between two polarization modes in a birefringent medium (see, for example,
Dauler, Jaeger, Muller, Migdall and Sergienko [1999]). PMD is important,
among other reasons, in understanding propagation of polarized light in optical
fibers, such as has been proposed for the purposes of quantum cryptography
(see below). The extreme constraint on the simultaneity of the creation of the
two photons of a down-conversion pair allows for the high resolution achieved
using such a method. The PMD can be determined with sub-femtosecond
resolution by studying the effect of dispersive media on this interference feature.
An important advantage of this technique, relative to some non-white light
interferometric methods, is that it determines the optical delay absolutely, as
opposed to simply measuring the delay modulo a wavelength. The PMD is
directly determined from the temporal shift of the HOM-type interference feature
produced by the insertion of a birefringent sample into the interferometer
(see fig. 18).
Two ways of producing a coincidence event are arranged so that they

cannot be distinguished (even in principle). A differential delay line is used
to delay one polarization relative to the other. The coincidence rate from
spatially separated detectors is recorded as this delay line is varied. When the
two photons are separated at the beamsplitter by more than their coherence
time the two coincidence events can be distinguished, so no interference is
possible; the total coincidence rate is simply the sum of the two individual rates.
When the two photons reach the beamsplitter to within their coherence time,
however, destructive interference occurs, as the detector polarizers are oriented
at 45 degrees and 135 degrees. The two types of coincidence, the first photon
produced in the e polarization and the second in the o polarization, or vice versa,
become indistinguishable. The temporal correlations are limited by the length
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Fig. 18. Apparatus for high-precision PMD measurements (Dauler, Jaeger, Muller, Migdall and
Sergienko [1999]).

of the down-conversion crystal, and a triangular-shaped interference feature is
seen. This occurs because the effect is to convolve two rectangular two-photon
wavefunctions. The shift of the center of this interference feature is identical to
the PMD of the sample. The uncertainty limit of the method was determined by
how well the center of that feature was determinable. This was found to be as
low as 0.15 fs.
Most recently, the two-photon interferometer has been modified to produce

a modified interferogram, with additional “internal fringing” (see fig. 19)
(Branning, Migdall and Sergienko [2000]). This feature of “fringing in the
HOM dip” is introduced by moving the additional variable delay line of the
first arrangement for PMD measurement after the first beamsplitter (see fig. 20).
Using this improved technique allows one to measure the PMD with a precision
of 8 attoseconds.
In the quantum-informational context, decoherence-free subspaces within

multiple-photon Hilbert spaces have been a subject of interest. They could be
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Fig. 21. Preserving a two-photon decoherence-free polarization subspace (Berglund [2000]).

useful, for example, in the redundant coding of quantum information (Ekert,
Palma and Suominen [2000]). One could, for example, encode the states

∣∣0̃〉 , ∣∣1̃〉
as follows:

|0̃〉 = |0, 1〉, |1̃〉 = |1, 0〉, (3.5)

where information-bearing states built from the double eigenstate are chosen not
to be susceptible to decoherence in a way that those constructed using the single
eigenstate might be. The decoherence-free (DF) subspaces of the Hilbert space
of hyperentangled polarization states have recently begun to be studied (Berglund
[2000] and Kwiat, Berglund, Altepeter and White [2000]).
In particular, it has been shown that, while the energy correlations required by

down-conversion phase-matching conditions can render two-photons susceptible
to decoherence under the influence of an environment where frequency–
polarization coupling is present, the DF subspace can be readily preserved
(fig. 21). By appropriately symmetrizing the induced phase errors for the
antisymmetric polarization state |y−〉, its decoherence-free character can be
demonstrated (Zanardi [1997]).
The Bell states

∣∣y±〉
= 1√

2
(|H,V〉 ± |V,H〉) , ∣∣÷±〉

= 1√
2
(|H,H〉 ± |V,V〉) , (3.6)

are initially considered, with identical birefringent crystals placed across both
paths L and R; denoting the thickness of the nonlinear crystal as L, the phase
difference between the two arms will be w LDn

c . The off-diagonal elements of
the density matrix for |y±〉 approach zero as the crystal thickness surpasses
the coherence length of the down-conversion photons, which is proportional
to c /dw, with dw the width of the frequency spectrum. In this configuration,
|÷±〉 do not undergo decoherence, while |y±〉 do.
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In particular, at the analyzer, |÷±〉 is transformed to

|÷′±〉 = 1√
2

(
|H,H〉 ± exp

[
i
w0
2

LDn
c

]
|V,V〉

)
, (3.7)

which has no effect on the magnitude of off-diagonal density matrix elements.
However, these states do not generate a DFS, since in the left/right-circular
polarization basis they are written

∣∣÷±〉
= 1
2 (|L, R〉 ± |R, L〉) , (3.8)

and thus can lose phase information in crystals with eigenmodes |L〉, |R〉. By
contrast, the antisymmetric state is rotationally invariant, so there is hope for
recovering its DFS. By rotating the nonlinear crystal in one arm by 90 degrees,
the states |÷±〉 and |y+〉 will be seen to decohere, while the state |y−〉 will not:
its state at the analyzers will be

|y ′−〉 = 1√
2

(
|H,V〉 − exp

[
i
w0
2

LDn
c

]
|V,H〉

)
. (3.9)

Quantifying the fidelity of the transmission process, F = Tr( øin øout) or, for a
mixed input state, F =

[
Tr(

√√
øin øout

√
øin)

]2
, decoherence-free subspaces will

have F = 1, which is the case for |y−〉.
The currently most advanced form of quantum information experimentation

is taking place in quantum cryptography – more precisely, quantum key
distribution (QKD). QKD is the distribution of a secret key (bit sequence)
between two interested parties, usually called Alice and Bob. This key can be
used to encrypt and decrypt secret messages using the safe one-time pad method
of encryption. The security of QKD is not based on complexity, but on quantum
mechanics, since it is generally not possible to measure an unknown quantum
system without altering it. Any eavesdropping introduces physical errors in the
transmitted data (see also § 3.1.4 of ch. 1 in this volume).
The basic QKD protocols are the BB84 scheme (Bennett and Brassard [1984])

and the Ekert scheme (Ekert [1991]). BB84 uses single photons transmitted from
sender (Alice) to receiver (Bob), which are prepared at random in four partly
orthogonal polarization states: 0, 45, 90 and 135 degrees. When an eavesdropper,
Eve, tries to obtain information about the polarization, she introduces observable
bit errors, which Alice and Bob can detect by comparing a random subset
of the generated keys. The Ekert protocol uses entangled pairs and a Bell-
type inequality. In that scheme, both Alice and Bob receive one particle of
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the entangled pair. They perform measurements along at least three different
directions on each side, where measurements along parallel axes are used for key
generation, and those along oblique angles are used for security verification.
Several innovative experiments have been made using entangled photon pairs

to implement quantum cryptography in the recent period, 1999–2000 (Sergienko,
Atatüre, Walton, Jaeger, Saleh and Teich [1999], Jennewein, Simon, Weihs,
Weinfurter and Zeilinger [2000] and Tittel, Brendel, Zbinden and Gisin [2000]).
Quantum cryptography experiments have had two principal implementations:
weak coherent state realizations of QKD and those using two-photons. The
latter approach made use of the nonlocal character of polarization Bell states
generated by spontaneous parametric down-conversion. The strong correlation of
photon pairs, entangled in both energy–time and momentum–space, eliminates
the problem of excess photons faced by the coherent-state approach, where the
exact number of photons actually injected is uncertain. In the entangled-photon
technique, one of the pair of entangled photons is measured by the sender,
confirming for the sender that the state is the appropriate one. It has thus become
the favored experimental technique.
The first of the recent innovative experiments using SPDC demonstrated a

more flexible and robust method of quantum secure key distribution with type-II
phase-matched two-photons, in an improved configuration (Sergienko, Atatüre,
Walton, Jaeger, Saleh and Teich [1999]). The high contrast and stability of the
fourth-order quantum interference, along with the available knowledge of the
exact number of photons present in the quantum communication channel, clearly
show the performance of EPR-state-based quantum key distribution to be supe-
rior to the coherent-state-based technique. The entangled-photon technique had
previously used type-I phase-matched pairs and, as a result, suffered from low
visibility (only up to 85%) and poor stability of the intensity interferometer. This
has primarily been due to the need in previous experiments for the synchronous
manipulation of interferometers well separated in space. The intervention of any
classical measurement apparatus (eavesdropping) will cause an immediate reduc-
tion of the visibility to 70.7%, so high visibility is required to ensure key security.
Only an undisturbed EPR state can produce 100% interference visibility.
Previous attempts to demonstrate the feasibility of quantum key distribution

using EPR photons had failed to attain the high-visibility coincidences. A double,
strongly unbalanced, distributed polarization intensity interferometer was used to
avoid the simultaneous spatial manipulation that compromised previous attempts.
A frequency-doubled femtosecond Ti:sapphire laser was used to generate 80-fs
pulses at 541.5 nm that were sent through a 0.1-mm-thick BBO crystal, oriented
so as to yield collinearly propagating type-II phase-matched EPR pairs. The
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Fig. 22. Two-photon entangled-state QKD scheme 2000 (Sergienko, Atatüre, Walton, Jaeger, Saleh
and Teich [1999]).

photons entered two spatially separated interferometer arms via a polarization-
insensitive 50−50 beamsplitter BS, which allowed photons of both ordinary and
extraordinary polarization to be reflected and transmitted with equal probability.
One output port led to a controllable polarization-dependent optical delay – the
e-ray/o-ray loop – then to detector 1. The other led, through an optical channel, to
detector 2. Polarization analyzers were placed in front of each photon-counting
detector and were oriented at 45º or 315º. Coincidence counts between the two
detectors were monitored as a function of the optical delay between the orthog-
onally polarized photons. In this quantum key-distribution arrangement, the first

Revised proof, Progress in Optics 42, p. 306



5, § 3] Two-photon interferometry with type-II SPDC 307

Fig. 23. Two-photon quantum cryptographic signals (Sergienko, Atatüre, Walton, Jaeger, Saleh and
Teich [1999]).

beamsplitter is located with the quantum key sender (Alice), while one of the
output beamsplitters is located at a distance with the receiver (Bob), as in fig. 22.
The high-frequency carrier that resides under the HOM-type interference

feature reflects the period of the UV pump wavelength rather than that of
individual waves, and arises from the nonlocal entanglement of the twin beams.
As shown in fig. 23a, a 90º phase shift of one of the analyzers modifies the
quantum interference pattern so that the central fringe is constructive rather than
destructive. The contrast is very high, 98%, as is evident from fig. 23b. This
demonstrates that cryptographic key qubits – one value corresponding to each of
the two sorts of interference – can be sent with a high degree of fidelity using this
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Fig. 24. Time–energy entanglement quantum key distribution scheme (Tittel, Brendel, Zbinden and
Gisin [2000]).

apparatus. Key distribution works as follows. The polarizations of the photons
are randomly modulated by switching each analyzer–modulator in the rectilinear
basis (45º and 315º), providing 0º or 90º relative phase shift between them.
In order to fully complete the procedure of quantum key distribution, it

would also be necessary to randomly switch the polarization parameters of the
two-photon entangled state between two nonorthogonal polarization bases, such
as rectilinear and circular polarization. This could be accomplished using fast
Pockels-cell polarization rotators. These sets of randomly selected angles force
the mutual measurements by Alice and Bob to be destructive (a binary “0”) or
constructive (a binary “1”) with a 50−50 probability, depending on the mutual
orientation of the modulators on both sides. Communications between Alice
and Bob, which give the set of polarizer orientations selected during each
measurement but not the measurement outcomes themselves, are then to be sent
over a public classical communication channel. Other protocols may be devised
to endow this configuration with the full security that has been added to other
configurations.
A second experiment uses a scheme that combines using photon pairs and

energy–time entanglement (Tittel, Brendel, Zbinden and Gisin [2000]). This
scheme realizes the initial concept of using photon-pair correlations (Ekert
[1991]) for QKD (fig. 24). However, it implements Bell states, and the robustness
of energy–time entanglement allows the information produced using this second
method to be preserved over long distances. In this scheme, a light pulse sent at
time t0 enters an initial interferometer imposing a large path length difference
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relative to the pulse length. The pulse is split in two, so that the subpulses leave
time-separated but with a definite phase difference.
The 655 nm, 80MHz pulses entered a down-converting (KnbO3) crystal

creating two-photons described by

|y〉 = 1√
2

(
|s〉p |s〉p + ei÷ |°〉p |°〉p

)
, (3.10)

where |s〉p and |°〉p are photon states created by a pump photon that traveled
via the short or the long arm of the initial fiber interferometer, respectively.
The full set of Bell states are thus achievable by the appropriate choosing of
and/or interchange of a short or long photon state for one of the photons. The
photons were separated and sent, one to the Alice wing and one to the Bob wing.
Each photon then traveled through another fiber interferometer, introducing the
same path difference through one or the other arm as the initial, pre-crystal
interferometer.
In order to use this system for QKD, Alice and Bob are to carry out the

following procedure. The photons arrive at Alice’s detectors in one of three time
slots relative to t0. The time-of-arrival to Alice does not give a full description of
the two-photon state, since the path of the photon traveling to Bob is unknown
to Alice. To obtain the quantum key, Alice and Bob then use a classical channel
to find those events where both detect a photon in a side peak, without revealing
the detector. The other half of the events are discarded, leaving them with
correlated detection times. Finally, they assign bit value “0” to the short cases
and “1” to the long cases. When both find the photon in the central temporal
position, by choosing appropriate phase settings, Alice and Bob will always find
perfect correlations in the output ports. Either both detect the photons in their
“+” detector (bit value “0”), or both in their “−” detector (“1”). Bit rates of
roughly 33 bps and bit error rates of around 4% were achieved.
A third recent QKD experiment (fig. 25) used |y−〉-state two-photons created

in BBO to approximate a single photon source (Jennewein, Simon, Weihs,
Weinfurter and Zeilinger [2000]). It implemented a novel key distribution scheme
using the Wigner-version Bell-type inequality (Wigner [1970]) to test the security
of the quantum channel, as well as a variant of the BB84 protocol (Bennett
and Brassard [1984]). To use the Wigner inequality analogous to the CHSH
inequality in the Ekert protocol, observer Alice chose between two polarization
measurements along the axes x and u, corresponding to angles c and y, with the
possible results 1 and −1, on photon A; Bob chose between measurements along
u and v, corresponding to angles y and w, on photon B. When the polarization
was parallel to the analyzer axis the result was 1; with polarization orthogonal
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Fig. 25. Realization of two-photon QKD over a long distance (Jennewein, Simon, Weihs, Weinfurter
and Zeilinger [2000]).

to the analyzer axis the result was −1. By assuming premeasurement values for
properties along x, u and v and perfect anticorrelation of measurements along
parallel axes, the probabilities for obtaining 1 on both sides obey the inequality

p++( c ,y) + p++(y,w) − p++( c ,w) ¾ 0. (3.11)

The quantum-mechanical prediction for arbitrary analyzer settings a with Alice
and b with Bob given the linear polarization singlet Bell state Y − is

pQM++ (a, b) = 1
2 sin

2(a − b). (3.12)

Maximum violation of the inequality is thus obtained for c = −30º, y = 0º,
w = 30º, when the l.h.s. reaches −1/8. To send the quantum key Alice
and Bob randomly change their analyzer settings: Alice between −30º and 0º,
Bob between 0º and 30º. Four combinations of analyzer settings can thus
occur: the three oblique settings allow a test of Wigner’s inequality, the
remaining combination of parallel settings allows key generation using perfect
anticorrelations. When the probabilities violated Wigner’s inequality, then the
generated key was taken to be secured.
The second QKD realization of this experiment implemented a variant of the

BB84 protocol with entangled photons, with the same |y−〉-state polarization-
entangled photon pairs approximating the single-photon realization of BB84.
Alice and Bob randomly changed their polarizer settings between 0º and 45º.
They observed perfect anticorrelations whenever their analyzers were parallel.
They obtained identical keys by simply inverting all resulting bit values.
Whenever Alice made a measurement on photon A, photon B was projected into
the orthogonal state that was analyzed by Bob, or vice versa. After the initial
bit distribution, key security could be checked by classically comparing a small
subset of their keys to check the security via the error rate.
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The nonlinear crystal used was again BBO, producing polarization-entangled
photon pairs at a wavelength of 702 nm from cw pump light of 351 nm at a power
of 350mW. The photons were each coupled into 500m long optical fibers and
transmitted to “Alice” and “Bob”, respectively, who were separated by 360m.
Wollaston polarizing beamsplitters were used as polarization analyzers. The
users generated raw keys at rates of 400−800 bps, with bit error rates of
approximately 3%.

§ 4. Higher multiple-photon entanglement

The entanglement of three or more photons has been a subject of great
interest since the proposals in 1989 and 1990 of Greenberger, Horne, Zeilinger
and Shimony to test locality, reality and completeness assumptions of EPR
using entangled three-particle states (Greenberger, Horne and Zeilinger [1989],
Greenberger, Horne, Shimony and Zeilinger [1990], Bernstein, Greenberger,
Horne and Zeilinger [1993], Klyshko [1993], Aravind [1997]). Bell’s inequality
had provided a test of these assumptions using statistical correlations, with the
most striking results involving Bell states. The GHZ theorem provided a test
involving perfect correlations without the use of inequalities, through the use of
“GHZ states”. The GHZ states can be written as

∣∣F±〉
=
1√
2
(|H〉|H〉|H〉 ± |V〉|V〉|V〉) ,

∣∣Y±
1

〉
=
1√
2
(|V〉|H〉|H〉 ± |H〉|V〉|V〉) ,

∣∣Y±
2

〉
=
1√
2
(|H〉|V〉|H〉 ± |V〉|H〉|V〉) ,

∣∣Y±
3

〉
=
1√
2
(|H〉|H〉|V〉 ± |V〉|V〉|H〉) ,

(4.1)

in the three-polarization case. Among other reasons, such states are interesting
because, as in the Bell states (3.6), the polarization of each photon is
indeterminate while the three particles are certainly perfectly correlated in
polarization. A similar, beam-entangled set of states has also been introduced
(Greenberger, Horne, Shimony and Zeilinger [1990]). These states allow
entanglement to be studied in a less trivial context than that of the traditional
two particles. Interferometric studies subsequently sought to exhibit these
correlations and to use them for various means.
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Fig. 26. Three-photon beam-entanglement source (Zeilinger, Horne, Weinfurter and Zukowski
[1997]).

In 1997, Zeilinger, Horne, Weinfurter and Zukowski proposed a scheme for
generating GHZ states using the concept of quantum erasure, following an earlier
direction of investigation initiated by Yurke and Stoler [1992] that they developed
further (Zukowski, Zeilinger, Horne and Ekert [1993], Zukowski, Zeilinger and
Weinfurter [1995], Zeilinger, Horne, Weinfurter and Zukowski [1997]). This
approach allows one to achieve entanglement while avoiding the problematic
need for particle interaction, as had previously been used for this end; its use
was explicated for both polarization and beam entanglement. This scheme begins
with two independent sources of two-photons, followed by the “erasing” of
source information of one of the four photons at a beamsplitter (see, for example,
figs. 26 and 28).
This was first done using a pair of laser pulses. An illustration of this principle

is shown in fig. 26 for the case involving beam entanglement. The states of the
initial down-conversion pairs can be written

1√
2

(|a〉|d〉 ± |a′〉|c′〉) , 1√
2

(|d′〉|b′〉 ± |c〉|b〉) . (4.2)

After one of the four photons triggers a detector in the source, three-photon states
arise for the remaining three particles, yielding the entangled state of beam-
direction eigenvectors

1√
2

(|a〉|b〉|c〉 + ei÷|a′〉|b′〉|c′〉) . (4.3)

The possibilities represented in this state then can be made to interfere in an
apparatus such as that shown schematically in fig. 27, with triple-incidences, for
example, at detectors DA, DB, DC, that vary sinusoidally in ÷a + ÷b + ÷c.
In general, when three-particle interference visibilities surpass 50%, a viola-

tion of a Bell locality can be demonstrated (Mermin [1990b]). A polarization
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Fig. 27. Three-photon beam-entanglement interferometer (Zeilinger, Horne, Weinfurter and
Zukowski [1997]).

Fig. 28. Three-photon polarization-entanglement source (Pan and Zeilinger [1998]).

GHZ-state source analogous to that for beams in fig. 26 is shown in fig. 28.
A GHZ-state analyzer (see fig. 29) can be constructed, just as a Bell-state
analyzer (see fig. 16) can, in a manner that can also be extended to construct
an n-particle entangled state analyzer. For three photons in the modes A, B and
C, the scheme of fig. 29 will give rise to triple-incident detections when the
photons are in GHZ states |F±〉. These two states can then be distinguished
because, after the half-wave plates (HWPs), |F+〉 results in one or three photons
with polarization H and zero or two photons with polarization V, while |F−〉
results in just the opposite situation.
The first experimental proof of entanglement of more than two spatially

separated particles was only recently produced (Bouwmeester, Pan, Daniell,
Weinfurter and Zeilinger [1999]). In this demonstration, the first two photon pairs
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Fig. 29. GHZ-state analyzer (Pan and Zeilinger [1998]).

Fig. 30. Three-photon polarization-entanglement source (Bouwmeester, Pan, Weinfurter and
Zeilinger [1998]).

were generated from a single PDC source (BBO) using a 394 nm pulsed laser
pump (see fig. 30) to create the state

1√
2
(|H〉a|V〉b − |V〉a|H〉b) . (4.4)

Narrow-bandwidth filters made the coherence time of the photons (500 fs) more
than twice as long as that of the initial UV pulse (200 fs).
In arm a, a polarizing beamsplitter reflected only vertical polarizations,

which were subsequently rotated 45º by an HWP; in arm b, an ordinary
50−50 beamsplitter reflected both polarizations with equal likelihood. The two
arms were arranged so as to meet at a polarizing beamsplitter from opposite
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sides. The events of interest were those in which two photon pairs were created
simultaneously. The GHZ state in those cases,

∣∣Y±
3

〉
=
1√
2
(|H〉|H〉|V〉 + |V〉|V〉|H〉) , (4.5)

was then post-selected by considering only events where four simultaneous
detections were made at detectors D1, D2, D3 and the trigger detector T. Though
the detection efficiency for such joint events was only 10−10/pulse, the pulse rate
was nearly 108/s and the observed coincidence detection rate was nearly one
detection every 2.5 minutes. The ratio of desired versus undesired detections
(by polarization state) for the joint detections was 12 :1. Coherent superposition,
as opposed to an undesirable mixture, of the two desired states was verified by
measuring the first photon in the 45º polarization state and finding the second
and third photons to be entangled by virtue of their polarizations being seen
to be identically polarized along the 45º direction, as predicted for “entangled
entanglement” (Krenn and Zeilinger [1996]).
With the arrangement of fig. 30, only the triple coincidences (of particles

1, 2 and 3) predicted by quantum mechanics were observed and none of
those predicted by local realism were found, within experimental uncertainties.
Entangled three-particle states were created with a purity of 71%. An interference
visibility of 75% was obtained. The optimal Bell-type inequality for three
particles was derived by Mermin [1990a] to be

|〈xyy〉 + 〈 yxy〉 + 〈 yyx〉 − 〈xxx〉| ¶ 2, (4.6)

with x the outcome for measurements in the basis {|x±〉 = 1√
2
(|H〉 ± |V〉)}, and y

that for a measurement in {|y±〉 = 1√
2
(|H〉 ± i|V〉)}. This inequality requires only

a visibility >50% to be violated. With this arrangement, the l.h.s. of eq. (4.6) was
found to reach 2.83±0.09 (Bouwmeester, Pan, Daniell, Weinfurter and Zeilinger
[2000]), in clear violation of local realism.
Another recent experimental discovery was that two particles, each initially

entangled with one other’s partner particle, can be placed in an entangled state by
making a Bell measurement, giving rise to “entanglement swapping” (Bennett,
Brassard, Crepeau, Jozsa, Peres and Wootters [1993], Zukowski, Zeilinger, Horne
and Ekert [1993] and Bose, Vedral and Knight [1998]). In a recent experiment, a
single nonlinear crystal was used as the source of a pair of two-photons to be used
in entanglement swapping (Pan, Bouwmeester, Weinfurter and Zeilinger [1998]).
In that experiment, calling the photons from one source (I) 1 and 2, and those
from the other source (II) 3 and 4, a Bell-state measurement was made of two
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Fig. 31. Experimental arrangement for entanglement swapping (Bouwmeester, Pan, Weinfurter and
Zeilinger [1998]).

photons from different sources, say photons 2 and 3 (see fig. 31). The result was
that the state of the other two photons, 1 and 4, was projected onto an entangled
state. This can be seen as follows. The initial state of the two photon pairs is

|X〉 = 1
2 (|H〉|V〉 − |V〉|H〉)12 (|H〉|V〉 − |V〉|H〉)34

= 1
2

(|Y +
14〉|Y +

23〉 + |Y −
14〉|Y −

23〉 + |F+14〉|F+23〉 + |F−14〉|Y −
23〉

)
.

(4.7)

Photons 2 and 3 are then measured, projecting their state onto one of the Bell
states,

∣∣Y±〉
23
=
1√
2
(|H〉|V〉 ± |V〉|H〉) ,

∣∣F±〉
23
=
1√
2
(|H〉|H〉 ± |V〉|V〉) .

(4.8)

As a result, the pair of photons 1 and 4 are in the state that was found in
measurement, as can be seen from the expansion of |X〉.
Similarly, in the so-called quantum polarization teleportation process, a laser

pump-pulse was used to provide the opportunity to create two pairs of photons:
on the path from left to right the pulse creates an entangled pair, the so-called
“ancillary” pair of photons 2 and 3 (see fig. 32). One of these photons is passed
on to Alice and the other one to Bob, who receives the polarization state. On the
return path from the mirror the pulse again creates a pair of photons (photons
1 and 4). The second photon of that pair (photon 4) is sent to a trigger detector, p,
that is used to reject all events in which this second pair was not created. In
the experiment the entangled photons, photons 2 and 3, were produced in the
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Fig. 32. Experimental arrangement for polarization teleportation (Bouwmeester, Pan, Weinfurter and
Zeilinger [2000]).

antisymmetric state |Y −
23〉. Alice subjects both the photon to be teleported and

her ancillary photon to a partial Bell-state measurement using a beamsplitter.
Observation of a coincidence at the Bell-state analyzer detectors, f1 and f2,
then informs Alice that her two photons were projected into the antisymmetric
state |Y −

12〉. This then implies that Bob’s photon is projected by Alice’s Bell-state
measurement onto the original state completing the process.
Some work has also been done to assess the quality of quantum state

teleportation (Bouwmeester, Pan, Mattle, Eibl, Weinfurter and Zeilinger [1997]).
In particular, it has been pointed out that teleportation fidelity and teleportation
efficiency are distinct. The quality of a quantum teleportation procedure can be
evaluated on the basis of three properties:
(i) How well any arbitrary quantum state that it was designed to transfer can

be teleported (fidelity of teleportation);
(ii) How often it succeeds when given an input it was designed to teleport

(efficiency of teleportation);
(iii) How well it rejects a state it was not designed to teleport (cross-talk

rejection efficiency).
The aim of the above experiment was to teleport with high fidelity a quantum bit
of information, i.e., a two-dimensional quantum state, given by the polarization
state of a single photon. When the teleportation system does not output a single
photon carrying the desired qubit it is similar to an absorption process in a
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communication channel; after renormalization of a two-dimensional state, the
original state, the qubit, is obtained again without any influence on fidelity. In the
above experiment, any incoming UV pump pulse had two chances to create pairs
of photons. So those cases where only one pair resulted are rejected, since only
those situations are accepted in which the trigger detector p fires together with
both Bell-state analyzer detectors f1 and f2. Similarly, any cases where more
than two pairs are created is ignored in the experiment since the likelihood of
creating one pair per pulse in the modes detected corresponds to less than one
event per day.
Further, a three-fold coincidence p−f1−f2 has only two explanations. First,

teleportation of the initial qubit could be properly encoded in photon 1 as was
demonstrated for the 5 polarizer settings H, V, +45º, −45º and R (circular). These
bases involve quite different directions on the Poincaré sphere, proving that tele-
portation works for arbitrary superpositions. Second, both photon pairs could be
created by the pulse on its return trip; in that case no teleported photon arrives at
Bob’s station and teleportation does not happen, but Alice still records a coinci-
dence count at her Bell-state detector. This leads to a high intrinsic cross-talk re-
jection efficiency. Nonetheless, only one of the four Bell states was identified, i.e.
the protocol works in only one out of every four possible situations. However, this
only reduces the efficiency of the scheme, not the fidelity of the teleported qubit.
Another method of teleportation avoids the problem of performing a joint Bell

measurement on two particles, following an initial proposal of Popescu [1995].
This is done (see fig. 33) by encoding the two quantum states to be measured by
Alice on two degrees of freedom of one particle (Boschi, Branca, De Martini,
Hardy and Popescu [1998]). The price that is paid for this ability is that the
preparer must select a pure quantum state (here a polarization state), rather than
an arbitrary state, and give it directly to the EPR photon of Alice. Both a linear
polarization state and an elliptical polarization state were teleported using this
method and a 200mWcw pump laser of 351 nm, with interference visibilities
exceeding 80%.
Another subject in fundamental quantum theory of multiple photons that can

be investigated using SPDC is attempted quantum cloning. Ideally, a quantum
cloning machine could be constructed that creates an arbitrary number of high-
fidelity copies of an arbitrary quantum state of a given quantum system. While
it has long been known that such a device cannot be constructed as a matter of
principle (Wootters and Zurek [1982], Dieks [1982]) – it would allow one to send
signals faster than light (Herbert [1982]) – a device can be constructed that makes
imperfect copies (Bužek and Hillery [1996, 1998], Bruss, DiVincenzo, Ekert,
Macchiavello and Smolin [1998], Gisin and Massar [1997], Bruss, Ekert and
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Fig. 33. Experimental arrangement for polarization teleportation (Boschi, Branca, De Martini, Hardy
and Popescu [1998]).

Fig. 34. Schematic for quantum cloning using down-conversion (Simon, Weihs and Zeilinger [2000]).

Macchiavello [1998]). Recently, Simon et al. investigated the question of such
universal cloning via parametric down-conversion (Simon, Weihs and Zeilinger
[2000]). They considered type-II phase-matched parametric down-conversion
with pulsed light input for polarization-entangled two-photon singlet-state output
(see fig. 34). Utilizing quasi-collinear outputs and cloning one photon of an
entangled pair, they entangled all three output photons.
By considering cloning beginning with N identical photons, i.e., the initial

state |yi〉 =
[(
a†
V1

)N /
(N !)1/2

]
|0〉, the portion of the output state containing a

fixed number of photons in mode 1 is proportional to

M − N∑
l = 0

(−1)l
(
M − l
N

)1/2
|M − l〉V1 |l〉H1 |l〉V2 |M − N − l〉H2 , (4.9)
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which is the output of an optimal cloning machine for the initial state. These
workers also investigated the practicality of creating such an apparatus. In
the laboratory, pair-production probabilities of 0.004 were achieved using a
76MHz pulse rate at a UV power of 0.3W and a 1mm BBO crystal (a situation
designed for maximum overlap of photons from different down-conversion
pairs). Assuming a realistic detection of 10%, this would allow for a two-
pair detection every few seconds. By changing to a 300 kHz laser system an
improvement in detection rate of more than an order of magnitude could be
expected.
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